Efficient Design for Mendelian Randomization Studies: Subsample and 2-Sample Instrumental Variable Estimators
نویسندگان
چکیده
Mendelian randomization (MR) is a method for estimating the causal relationship between an exposure and an outcome using a genetic factor as an instrumental variable (IV) for the exposure. In the traditional MR setting, data on the IV, exposure, and outcome are available for all participants. However, obtaining complete exposure data may be difficult in some settings, due to high measurement costs or lack of appropriate biospecimens. We used simulated data sets to assess statistical power and bias for MR when exposure data are available for a subset (or an independent set) of participants. We show that obtaining exposure data for a subset of participants is a cost-efficient strategy, often having negligible effects on power in comparison with a traditional complete-data analysis. The size of the subset needed to achieve maximum power depends on IV strength, and maximum power is approximately equal to the power of traditional IV estimators. Weak IVs are shown to lead to bias towards the null when the subsample is small and towards the confounded association when the subset is relatively large. Various approaches for confidence interval calculation are considered. These results have important implications for reducing the costs and increasing the feasibility of MR studies.
منابع مشابه
Authors’ response to Hartwig and Davies
1. Davey Smith G, Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol 2003;32:1–22. 2. Burgess S, Timpson NJ, Ebrahim S, Davey Smith G. Mendelian randomization: where are we now and where are we going? Int J Epidemiol 2015;44:379–88. 3. Haycock PC, Burgess S, Wade KH, Bowden J, Relton C, Davey Smith G....
متن کاملPower and sample size calculations for Mendelian randomization studies using one genetic instrument.
Mendelian randomization, which is instrumental variable analysis using genetic variants as instruments, is an increasingly popular method of making causal inferences from observational studies. In order to design efficient Mendelian randomization studies, it is essential to calculate the sample sizes required. We present formulas for calculating the power of a Mendelian randomization study usin...
متن کاملPleiotropy-robust Mendelian randomization.
Background The potential of Mendelian randomization studies is rapidly expanding due to: (i) the growing power of genome-wide association study (GWAS) meta-analyses to detect genetic variants associated with several exposures; and (ii) the increasing availability of these genetic variants in large-scale surveys. However, without a proper biological understanding of the pleiotropic working of ge...
متن کاملA review of instrumental variable estimators for Mendelian randomization
Instrumental variable analysis is an approach for obtaining causal inferences on the effect of an exposure (risk factor) on an outcome from observational data. It has gained in popularity over the past decade with the use of genetic variants as instrumental variables, known as Mendelian randomization. An instrumental variable is associated with the exposure, but not associated with any confound...
متن کاملEmerging Themes in Epidemiology Analytic perspective Can we apply the Mendelian randomization methodology without considering epigenetic effects?
Introduction: Instrumental variable (IV) methods have been used in econometrics for several decades now, but have only recently been introduced into the epidemiologic research frameworks. Similarly, Mendelian randomization studies, which use the IV methodology for analysis and inference in epidemiology, were introduced into the epidemiologist's toolbox only in the last decade. Analysis: Mendeli...
متن کامل